Ocean’s Rising Acidification Dissolves Shellfish That Coastal Tribes Depend On

ThinkstockThe ocean's acidity is rising and dissolving seashells, which could spell doom for Northwest tribes' way of life as well as their livelihood in the shellfish industry and sustenance harvesting.
The ocean’s acidity is rising and dissolving seashells, which could spell doom for Northwest tribes’ way of life as well as their livelihood in the shellfish industry and sustenance harvesting.


Terri Hansen, Indian Country Today, 8/14/14


The ancestral connections of tribal coastal communities to the ocean’s natural resources stretch back thousands of years. But growing acidification is changing oceanic conditions, putting the cultural and economic reliance of coastal tribes—a critical definition of who they are—at risk.

It’s a big challenge to tribes in the Pacific Northwest, said Billy Frank Jr. (Suquamish) back in 2010, addressing the 20 tribes that make up the Northwest Indian Fisheries Commission.

“It’s scary,” he said in a video posted at the fisheries commission website. “The State of Washington hasn’t been managing it. The federal government hasn’t been managing it. We’ve got to bring the science people in to tell them what we’re talking about.”

What they were talking about are the decreases in pH and lower calcium carbonate saturation in surface waters, which together is called ocean acidification, as defined by the National Oceanic and Atmospheric Administration (NOAA). Some 30 percent of the carbon, or CO2, released into the atmosphere by human activities has dissolved straight into the sea. There it forms the carbolic acid that depletes ocean waters of the calcium that shellfish, coral and small creatures need to make their calcium carbonate shells and skeletons.

Its impacts are felt by Native and non-Native communities in Washington State that rely on oysters and shellfish. Disastrous production failures in oyster beds caused by low pH-seawater blindsided the oyster industry in 2010, prompting a comprehensive 2012 investigation by Washington State. Earlier this month Governor Jay Inslee took the issue to the media in order to jump-start climate change action in his state, The New York Times reported on August 3.

The Quinault Indian Nation on Washington’s coast is part of one of the most productive natural areas in the world and is especially involved in the ocean acidification issue. The rivers in Quinault support runs of salmon that have in turn supported generations of Quinault people. The villages of Taholah and Queets are located at the mouth of two of those great rivers. The Pacific Ocean they flow into is the source of halibut, crab, razor clams and many other species that are part of the Quinault heritage.

“Since the summer of 2006, Quinault has documented thousands of dead fish and crab coming ashore in the late summer months, specifically onto the beaches near Taholah,” Quinault Marine Resources scientist Joe Schumacker told Indian Country Today Media Network. “Our science team has worked with NOAA scientists to confirm that these events are a result of critically low oxygen levels in this ocean area.“

The great productivity of this northwest coast is driven by natural upwelling, in which summer winds drive deep ocean waters, rich in nutrients, to the surface, Schumacker explained. This cycle has been happening forever on the Washington coast, and the ecosystem depends on it.

But now, “due to recent changes in summer wind and current patterns possibly due to climate change, these deep waters, devoid of oxygen, are sometimes not getting mixed with air at the surface,” Schumacker said. “The deep water now comes ashore, taking over the entire water column as it does, and we find beaches littered with dead fish—and some still living—in shallow pools on the beaches, literally gasping for oxygen. Normally reclusive fish such as lingcod and greenling will be trapped in inches of water trying to get what little oxygen they can to stay alive.”

The Quinault, working with University of Washington and NOAA scientists determined these hypoxia events were also related to ocean acidification.

“Now Quinault faces the potential for not just hypoxia impacts coming each summer, but also those same waters bring low-pH acidic waters to our coast,” Schumacker said. “Upwelling is the very foundation of our coastal ecosystem, and it now carries a legacy of pollution that may be causing profound changes unknown to us as of yet. The Quinault Department of Fisheries has been seeking funding to better study and monitor these potential ecosystem impacts to allow us to prepare for an unknown future.”

Schumacker noted that tribes are in a prime position to observe and react to these changes.

“The tribes of the west coast of the U.S. are literally on the front line of ocean acidification impacts,” he said. “Oyster growers from Washington and Oregon have documented year after year of lost crops as tiny oyster larvae die from low pH water. What is going on in the ecosystem adjacent to Quinault? What other small organisms are being impacted, and how is our ecosystem reacting? We have a responsibility to know so we can plan for an uncertain future.”

Scientists from NOAA and Oregon State University studied ocean waters off California, Oregon and Washington shorelines in August 2011, and found the first evidence that increasing acidity was dissolving the shells of a key species of minuscule floating snails called pterapods that lie at the base of the food chain.

Their study, published in the April 4, 2014, edition of the British scientific journal Proceedings of the Royal Society B, found that 53 percent of pterapods “are already dissolving,” said NOAA’s Feely.

“Pteropods are only a canary in this coal mine,” the Quinault’s Schumacker said. “They are a critical component of salmon diets, but what other creatures in the ecosystem are being affected?”

It’s a concern too, for the Yurok Tribe on the northern California coast. Micah Gibson, director of the Yurok Tribe Environmental Program, told ICTMN, “We’ve done some research, but no monitoring yet.”

The Passamaquoddy Tribal Environmental Department in Maine is monitoring ocean acidification, according to a letter the tribe sent to the U.S. Environmental Protection Agency (EPA). They reported that the pH of Passamaquoddy, Cobscook Bays and the Bay of Fundy was around 8.03 during the 1990s and had dropped to 7.92.

The lower the pH value, the more acidic the environment. If, or when, the Passamaquoddy letter stated, the level in bays falls to 7.90, shellfish—including clams, scallops and lobster, all economic mainstays—will die.

In Alaska, coastal waters are particularly vulnerable because colder water absorbs more carbon dioxide, and the Arctic’s unique ocean circulation patterns bring naturally acidic deep ocean waters to the surface, according to recent research funded by National Oceanic and Atmospheric Administration (NOAA) awaiting publication in the journal Progress in Oceanography.

Ocean acidification spells even more trouble for the Inuit subsistence way of life.

“New NOAA-led research shows that subsistence fisheries vital to Native Alaskans and America’s commercial fisheries are at-risk from ocean acidification,” NOAA said in the report. “Emerging because the sea is absorbing increasing amounts of carbon dioxide, ocean acidification is driving fundamental chemical changes in the coastal waters of Alaska’s vulnerable southeast and southwest communities.”

The pH of the ocean’s surface waters had held stable at 8.2 for more than 600,000 years, but in the last two centuries the global average pH of the surface ocean has decreased by 0.11, dropping to 8.1. That may not sound like a lot, but as of now the oceans are 30 percent more acidic than they were at the start of the Industrial Revolution 250 years ago, according to NOAA.

If humans continue emitting CO2 at the level they are today, scientists predict that by the end of this century the ocean’s surface waters could be nearly 150 percent more acidic, resulting in a pH the oceans haven’t experienced for more than 20 million years.

The ocean acts as a carbon sink, greatly reducing the climate change impact of CO2 in the atmosphere. When scientists factor in our increasingly acidic oceans their studies show that global temperatures are set to rise rapidly, according to a study of ocean warming published last year in the journal Geophysical Research Letters.

These frightening scenarios illustrate the point made by Frank in his talk on ocean acidification: Humanity must meet this challenge. So too must Inslee’s persistence in trying to place a high priority on climate change in Washington DC.

RELATED: Obama’s Climate Change Report Lays Out Dire Scenario, Highlights Effects on Natives

We are moving into the Anthropocene Age, a new geological epoch in which humanity is influencing every aspect of the Earth on a scale akin to the great forces of nature, according to the journal Environmental Science & Technology. The Anthropocene challenges American Indians, but if traditional knowledge could foresee the tremendous challenges posed by ocean acidification, Indigenous knowledge can surely find solutions to the impacts of climate change, starting with how we use energy, and how much carbon we emit.

“Have a little courage, and get out of some boxes,” the environmentalist and writer Winona LaDuke told ICTMN. “Put in renewable energy and re-localize our economies, from food to housing, health and energy.”


Read more at http://indiancountrytodaymedianetwork.com/2014/08/14/oceans-rising-acidification-dissolves-shellfish-coastal-tribes-depend-156395?page=0%2C1


How Ocean Chemistry Threatens The NW Oyster Industry



By: Kathryn Batstone-Boyd, Ben Stone, and Karina Ordell, OPB


NETARTS BAY, Ore. — Mark Wiegardt steps slowly through knee-high water, pausing over some jagged lumps of brown-gray shells with a bent flat-head screwdriver.

He picks up a clump of oysters and rests it on his thigh, stabbing and wrenching until the shellfish crack apart.

The creatures inside are more valuable than ever, so Wiegardt tries his best to make them look nice by bashing off the sharp edges.

Oysters are biologically simple. But nothing is simple about the water in which they live. The Pacific Northwest’s ocean chemistry is changing. A phenomenon known as ocean acidification has shocked the Northwest oyster industry, causing farmers and hatchery owners to modify decades-old ways of cultivating oysters and to reconsider the murky future of their industry.

“Our business has definitely been altered by this changing water chemistry,” Weigardt said.

He understands the concern surrounding ocean acidification better than almost anyone. Wiegardt’s a fourth-generation oyster farmer and one of the managers of Whiskey Creek Shellfish Hatchery in Netarts Bay, Oregon.

Like many hatcheries on the West Coast, Whiskey Creek grows Pacific oysters — a Japanese species introduced to America in the early 1900s. Farmers grow oysters in enclosed waters connected to the ocean, known as estuaries. But the coastal waters of the Northwest are too cold for Pacific oysters to spawn naturally. So, oyster seed suppliers like Whiskey Creek act as incubators.

Whiskey Creek houses huge vats of seawater that serve as swimming pools for young oyster larvae to develop. When the larvae are mature enough, the hatchery packs them in balls of paper towels before sending them to independent oyster farmers along the coast.

The farmers take the oyster “seed” to their nurseries and dump it into giant tanks, where the larvae “set” onto vacant oyster shells. When they are mature enough, the farmers remove the shellfish from the tanks and chuck them into the bay. The oysters will stay here for a couple years, fattening up by filtering algae and other nutrients out of the water. Eventually, the farmers will return and gather their harvest so the full-grown oysters can be bagged and sold.

Why Are The Larvae Failing?

In the late summer of 2007, the oyster larvae at Whiskey Creek Shellfish Hatchery didn’t make it to the bay. Without warning, the larvae began to fail by the millions inside the vats.

“Everything was dying. The larvae were pink. Every larva in the place was not feeding,” said Sue Cudd, owner of Whiskey Creek.

Whiskey Creek couldn’t supply its customers with seed. No one could understand why the larvae were dying.

“The changes were so dramatic, we thought there was a very strong possibility that we were going to go out of business,” Wiegardt said.

A year after the first die-offs, Whiskey Creek engineer Alan Barton scrambled for clues explaining why Whiskey Creek’s methods were suddenly not working. Barton discovered that an upwelling of ocean water with unusually high acidity was corroding the oysters’ shells, causing the larvae to die while trying to form an exoskeleton. He was eventually able to stem the die-offs by adapting simple aquarium chemistry to equalize the pH in Whiskey Creek’s tanks.

Since then, Whiskey Creek has learned to sustain healthy brown larvae in its vat water with a system that constantly buffers the water. However, the effectiveness of buffer chemicals is limited to hatchery tubs.

The die-offs made 2007 a defining year for West Coast oyster farmers.

Hedging Bets In Hawaii

Kathleen Nisbet, a manager of Goose Point Oyster Company in Willapa Bay, saw the die-offs as a signal to change. In 2009, Goose Point began constructing its first oyster hatchery in Hilo, Hawaii, in order to lessen its dependence on hatcheries like Whiskey Creek, which draw water from the Northwestern tides. Though the Nisbets had long done business with Whiskey Creek, and still do, they felt they had to set themselves apart geographically to insulate their business from the acidic waters.

“I employ 70 employees; I’m responsible for 70 families. That’s a big deal to me,” Nisbet said. “I can’t just say, ‘We’ll figure it out.’ I’ve got people I have to feed and it was our responsibility to look at what we needed to do.”

But even as one crisis seems resolved, another one looms. There’s a new concern that mature oysters may soon be at risk. Roberto Quintana, an engineer at Ekone Oyster Company on Washington’s Willapa Bay, has begun to see health defects in oysters out in the bay that he can’t correlate with natural events.

“Last year was when I first heard some of the old-timers from around here who were like, ‘We don’t know what the hell happened,’” Quintana said.

There is no consensus on what to do if water chemistry in the bays turns inhospitable for mature oysters. Quintana says there are a few options: genetically engineer a more hardy oyster species; try to apply buffer chemicals directly into the bays; or perhaps just give oysters more time in their safe nursery tanks.

Can The Oyster Industry Survive?

But for some, the thought of such dramatic changes to old farming techniques makes them question the long-term survival of the Northwest oyster industry.

“Those are big, philosophical questions,” Jambor said. “Do you get out of this business because you think it’s going to go down in 30 years? I don’t know.”

Whiskey Creek’s Wiegardt, however, is not about to idly watch the Northwest oyster industry go down in his lifetime. In the last few years, he has travelled many times with other Northwest shellfish producers to Washington, D.C., to tell their stories and ask lawmakers to pay for monitoring stations that would measure the water’s acidity.

“Farmers in general, I think we all like to complain a little more than we should,” he said. “[But] any time you know a little bit about something that may have a huge impact, you need to communicate that.”

Wiegardt thinks he has been well received in the Capitol, and he accepts these trips as his responsibility to the small community of Northwestern oyster farmers who know each other by first name.

“It’s not all doom and gloom,” Wiegardt said. “We’re solving a problem here as we speak.”

Kathryn Batstone-Boyd, Karina Ordell and Ben Stone are students in the University of Oregon’s School of Journalism and Communication. This report was produced as a class project. Video produced by Batstone-Boyd; photography by Ordell; article written by Stone.